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Executive Summary
There is no generally applicable definition of the term aided target
recognition (ATR). It has as many definitions as there are target-
recognition tasks. I take as a working definition the task of mapping
scenes to representations and extracting information concerning spe-
cific elements from these representations, such as the physical at-
tributes of objects in the scenes.

The overall problem area serves as an umbrella for work in many
fields, including optical processing and both analog and digital elec-
tronic processing. Because work in these fields mostly addresses
specific processing functions and focuses on performing these func-
tions optimally, this work does not often generalize. If the general
ATR problems can be well formulated, it may be possible to direct
work in these fields toward promising areas.

Several important questions are open that are fundamental to ATR
problems, such as optimal data representation, image-from-scene
mapping, preattentive/attentive vision boundaries, and the separa-
bility of the variables in a model. The bulk of current ATR work makes
assumptions about these (and other) questions which, if mistaken,
could render this work invalid. For example, if it is possible to show
that information from shift-invariant processing, from scale-invariant
processing, and from rotationally invariant processing combined is
equivalent to information obtained using a processing scheme invari-
ant to all three simultaneously, then the information is separable; if
not, information is lost. Unless a proof of such separability can be
given, it is more prudent to assume that the information is not
separable.

A great many image sensors are optical, but the information is almost
always converted into analog or digital electronic signals by the
sensor. A step can be added to perform analog optical preprocessing
of the image information. Tasks such as cueing, filtering, or data
reduction could be accomplished in an optical preprocessing stage.
For example, many researchers believe that edge enhancement is an
essential operation for pattern recognition; it is possible to perform
Sobel edge enhancement using liquid-crystal spatial light modulators
(SLM's) as a preprocessing step to image detection. In edge enhance-
ment, data are reduced and a preferred data representation is selected.
This sort of preprocessing step exploits the capabilities of optics, such
as large information throughput rate, continuous mapping, and par-
allel noninterfering connection at an appropriate place in the data
pipeline; issues of programmability and calculation accuracy place
cunstraints on such preprocesscors.
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Based on an evaluation of existing algorithms and devices, it is
possible to make a few forecasts on the success of ATR systems. At this
time it is possible to use ATR systems to do on-line product inspection
for a small number (say 10) of well-known defects in parts on an
assembly line. This assumes a simple geometric object and a processor
capable of doing real-time recognition with either shift, scale, or
rotational invariance, but not all three at once. Within five years it
should be possible to perform the same task with shift-scale-rotation
invariance in a lab environment; moreover, hybrid electronic/optical
systems should be available to do some simple recognition tasks on
airborne platforms, such as moving target indication, novelty filter-
ing, or tracking for a small number of well-known targets. Systems
that can perform emergent feature recognition (for recognizing un-
known targets) on images with clutter (that is, real-world images) will
require advances in algorithms and devices that should take at least 10
years to develop at the present rate of progress.

It is possible to evaluate the state of the available technologies in terms
of a typical goal: to fly a smart munition capable of detecting, classi-
fying, tracking, and targeting an enemy asset in the presence of clutter
in the air, on sea, or on land. The devices that are currently used fall
into three areas: minibench optics, integrated optics, and digital
electronics.

It is already possible to construct minibench optics to do the above
task, but the architectures and components do not yet exist to do the
detection, recognition, tracking, and targeting to useful limits.

The development of integrated optics is even less far along: there are
no existing system-level devices, since at this point research is active
in designing components necessary to build systems such as
waveguides, modulators, combiners, lenses, and detectors. No com-
mon material (such as lithium niobate or gallium arsenide) has yet
been identified for monolithic structures.

Digital electronic processing is in the favorable position of having
architectures and system-level components (as well as research-level
VHSIC components), but none of those available are fast enough to
perform the above tasks to acceptable levels. Backward compatibility
and progrdmmability can be considered additional advantages of
digital electronic processing, but both of these advantages are often
traded away in an attempt to increase processing speed.
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1. Introduction

Although there are many possible definitions of the term aided target
recognition (ATR), I take as a working definition the task of mapping
scenes to representations and extracting information concerning
specific elements from these representations, such as the physical
attributes of objects in the scenes.

The methods of attacking problems in ATR can be separated (for this
discussion) into several competing strategies.

(1) The most basic image manipulation, parameter ex,.'action, is the most
commonly used technique in ATR applications.

(2) The next logical grouping of image manipulation techniques involves
the first level of mathematical abstraction of images using linear
transform techniques. This grouping includes linear decomposition
techniques as well as integral transform techniques. Matched filter-
ing, correlation, and Fourier decomposition are some of the common
examples of linear transform techniques.

(3) Nonlinear techniques applied to ATR make up a third group. This
grouping includes neural network techniques (which I choose to call
nonlinear transform techniques) to ATR problems.

This paper examines the competing methods used for ATR in terms of
complexity of implementation, calculation burden, and operational
robustness. It will be necessary to consider data compression tech-
niques and the influence they have (if applicable) on competing
methods. The most serious challenges to any ATR solution are percep-
tion invariance (invariance with respect to transformations: i.e.,
stimulus equivalence) and image generalization or abstraction (seg-
mentation: i.e., feature extraction). These must be considered in exam-
ining ATR techniques.



2. Survey of ATR Techniques

This survey is intended to present some of the most commonly used
techniques for attacking ATR problems in a common format, compar -
ing the order of abstraction from raw image data and the complexity
of calculation.

Can one come up with a canonical sequence for ATR processing? No
such sequence applies equally well to all analog and digital ATR
mechanisms, but I use the sequence in figure 1 [1] as a point of
departure.

Target data are acquired using any number of sensors operating alone
or in data fusion, and the data are represented by some means as a
temporally and/or spatially varying signal or image. I shall assume
that we either detect or construct an image from t1 ,ese data. The image
formed can be segmented into subpictures; at this point some
subpictures ma-" be determined to be uninteresting and can be elimi-
nated. At any point in this sequence, of course, redundant data can be
filtered at the cost of increasing processing time and complexity. After
segmentation, the data in the subpictures are filtered for features. The
linear and nonlinear processing algorithms listed below are some
mechanisms used for this processing step. Features extracted by these

Figure 1. Sequence of Acquisition and 1
processing of ATR representation
data (adapted from
Hoffman and Jain
[11). Preprocessing/ 1

filtering

Segmentation

Feature extraction

Classification

Merging

Recognition
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mechanisms can be stored (if simple data collection is the goal), or
compared with stored feature information (either previously col-
lected or model generated) to complete the identification process.
Often image analysis routines are divided into preattentive (or early
warning) vision and attentive vision problems. Algorithms which
operate in either area should be fast, but for preattentive vision
problems speed is critical.

2.1 Parameter Extraction

Some of the simplest and most powerful picture-analysis methods
apply only first-moment techniques. Much can be determined from
simple first moments such as pixel intensity distributions, spatial
frequency distributions, or temporal frequency distributions. Rigor-
ously defined models that describe the first-moment characteristics of
image data offer a means to make first-moment techniques more
robust. The use of distribution theory to perform the identification
process provides another means of adding mathematical meat to the
skeleton of first-moment analysis.

Some model-based systems are designed to predict measurable quan-
tities such as the pixel intensity distribution (possibly parameterized
by aspect angle) obseti ved in an image. These systems use models of
objects, clutter, channel noise, etc, to generate such predictions. Ob-
served data are compared with these calculations, and the results are
used to identify objects. In general, the image representation models
are simplified; most often the images are modeled by vectors whose
elements correspond to pixel grey levels or other image parameters
(such as edges, zero crossings, etc).

A model-based scene-representation method [2] known as "maxi-
mum a posteriori" (MAP) estimation takes the model-based tech-
nique a little further. This is one example of the many methods of
ascertaining the optimal model for mapping a given scene to image
data.

In these discussions, image data are seen as a result of the operation of
some mapping A on real-world scenes:

iA= aVl .

The scene-to-image mapping A is in general nonlinear. The image-to-
scene inverse mapping is then the fundamental aspect of the target
recognition, and in this view the determination ofA-' is how the ATR
problem is formulated. In general, there may not be a unique scene s
that satisfies the equation

s=A li]
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Based on some as ;urnptions about the statistical distributions of the
image data and the noise, MAI' constructs a cost function relating the
image data, the unknown mapping A 1, and any constraints on the
system (such as continuity or bounds on image parameters). The cost
function is optimized over the possible mappings, and an estimate for
the scene is calculated based on the chosen A-'. Similarities exist be-
tween MAP and the work of S. Geman and D. Geman [31 on so-called
"stochastic annealing," which treats the optimization methods used
to determine such mappings.

Local operators (such as gradient or Sobel) or global operators (such
as integral transforms) are used in first-level filtering of image data for
feature extraction. Whether it is called representation, decomposition,
filtering, or correlation, this first data-reduction step compresses the
image data into features that will be measure6 against stored signa-
ture data or used to construct stored signatures. As data compression
(while retaining the significzrt data) is critical to any rapid ATR
precess, raw images are seldom examined in any sophisticated way in
real-time applications. In image sequence analysis, stationary infor-
mation may be subtracted away by a running image subtraction,
leaving only image data that change at a fixed rate. Images are often
filtered to emphasize high-frequency information (edge enhancement
by Sobel or other local operators). The implementation of such an
operator is often a correlation filter with a small kernel, such as a
3 x 3 pixel matrix.

2.2 Linear Processing Algorithms

The end goal of transform methods is to represent the total bulk of data
to be processed without losing important information, ideally so that
the data are reduced to a signature that is unique (orthogonal to all
other signatures) and can be used to identify a target. Any complete set
of linearly independent functions will do for the task of data compres-
sion (of signals or images) into co, fficients. The differences among
such functions can be evaluated in terms of their invariance proper-
ties, their fidelity of representation, and the ease and speed of their
implementation [4-71.

2.2.1 Hotelling or Eigenvector Decomposition

In transform encoding a picture, the intent is to separate all the data
into a set of independent points in a transform space so that they can
be distinguished from one another. The closest we can come to such a
transformation is the Hotelling transform, which produces
uncorrelated but not necessarily independent representations. Given
a picture with N x N pixels, each of which can take on 2K grey-scale
values, there would be 2,r .\'ý possible points that repit. sent pictures
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in an N x N space. Iu establish , coordinate system in which all the-e
points are independent, the transformation from picture coordinate,
x, (where irtuns from I to N-') to a new coordinate sysem it, is an N",.
N dimensional rotation matrix A, so that

l,•epresenting a given picture in terms of the new coordinates uises th,
inverse rotation / I, so that any given picture coordinate can he
represen ted as

NxN

Xi-=

The A matrix in the Hotelling transformation is formed using the
eigenvalues of the covariance matrix as the diagonal elements of an N2

by N2 matrix. Because of the necessity of performing an N 2 by N"
matrix inversion in order to calculate the elements of the A matrix for
the Hotelling transform, its implementation (analog or digital) is
bound to be more complicated than other transformations. For this
reason, although it yields the least mean-square error in image repre-
sentation, it is rarely used to represent images when rapid processing
is desired. Instead, one of several other transformation kernels is used;
a few of these follow. In the following transform discussions, 11 and Z,
are transform variables, while x, it, and t are signal/image variables.
In the following discrete forms of the transforms, N refers to number
of variables, unless otherwise indicated.

2.2.2 Fourier Decomposition

In Fourier decomposition, the orthogonal polynomials of the transfor-
mation are the sine and cosine functions. It appears that Fourier
decomposition is the most used transform technique because of the
ease of performing the necessary computation of coefficients by either
analog or digital means and the adequacy of its asymptotic conver-
gence to the eigenvector transform performance in mean square error.
The familiar Fourier transform (FT) kernel is

I exp -i(21rut)

A great many ATR mechanisms (both digital and analog) rely on the
Fourier representation of image data; examples include the Georgia
Institute of Technology Research Institute's digital stationary and
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moving target recognition algorithms, ;rossberg's adaptive reso-
nance theory_ digital pattern-recognition programs, and optical I1
holographic element correlators and spectrum analyzers.

2.2.3 Walsh-Hadamard Decomposition

In Walsh-Fladamard decomposition, the transform functions take on
only the values 0 or 1, which simplifies digital computation tremen-
dously. The kernel for a Walsh-Hadamard transform of order N
is given bv

A,- 1 ~ ' '-"-1 ht)

N -1) exp i(tk(t

where b(I to bkj are the bits in the binary representation of the signal
data.

2.2.4 Discrete Cosine Decomposition

The discrete cosine transform (DCT) uses the set of orthogonal poly-
nomials known as the Chebyshev polynomials. Its popularity stems
from the relative ease of digitally computing the transform, combined
with a lower mean square error than is obtained with the Walsh-
Hadamard transform or the discrete Fourier transform algorithms.
The kernel for the DCT is

Ali = -2 K(i) cos (2ti + I )t . .r
VN_ ,2N;;

where

for i = 1

K(=I) 2l1 fori=2,3,...,N

0 elsewhere

2.2.5 Gabor Decomposition [81
In the above transform techniques, their one- or two-dimensional

nature is merely a matter of notation, since all the transform variables

are essentially of the same character. The Gabor transform differs in
that it is a two-dimensional transform technique at the minimum. The
kernel of the Gabor transform uses both time and frequency (or
temporal and spatial) variables to represent the encoded image. The
Gabor transform differs in another way from those above in that the
transform basis vectors are not orthogonal (hence the coefficients are
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highly correlated with one another), and the transform is not revers-
ible in the same way as those above.

Once again, since it requires significant computation time, the ( ;abor
transform is not competitive when rapid processing is required. The
Gabor kernel is

X2,
Al,,,,•,=exp X(AWW'+ (ALO• cos(21r 1- 0)

1 2 2'

where AW is the spatial width of the sensor and AL is the spatial height
of the sensor; the resolution size of the data can be represented by these
delta variables. Some ATR systems whose goal is to emulatebiological
vision systems use the Gabor representation for image data.

2.2.6 Correlation Transform Techniques

Correlation transformation can be looked at as a decomposition
process, as can the transform techniques listed above. In correlation,
the kernel used to decompose the data is data itself. For an
autocorrelation, the data act as both kernel and data; in cross-correla tion
the data are compressed against a kernel that is stored or selected data.
A typical scenario for image correlation would use a training set of
various versions of the image of interest (possibly the target at various
aspect angles, and/or multiple target images). These images would be
correlated against one another and the correlation coefficients com-

pressed to form a sort of proto-image. This would be correlated
against test set(s), and recognition would consist of the result of this
correlation exceeding some threshold.

Instead of the training set consisting of images, a set of action principles
could be used for the construction of images. In this case, actions taken

in building the image or reading the image are encoded, and a test
image is compared against these action principles. If rebuilding or
decomposing the image reveals similar or identical action principles,
then recognition occurs. Many model-based systems take this approach.

2.3 Nonlinear Processing

Neural network (NN) solutions have been called "nonalgorithmic"
because these systems are self-organized, rather than being pro-
grammed. All NN's consist of two or more layers of simple processing
elements (PE's), which generally consist of a summation element and
a thresholding function.

All NN approaches use some nonlinear element; at mninimum, the NN
uses a threshold step (most often a sigmoid function) as the nonlinear
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element. Thus NN techniques are classified as nonlinear processing
methods because of this thresholding nonlinearity.

Each PE is connected to other PE's by a channel whose strength is
modifiable through one of several learning laws (Hebbian, Grossberg,
Hopfield, others) based on feedback from other layers in the NN.
Training data (whose output result is known) are fed into the NN and
passed through, and the NN output is compared with the desired
outp t. Error signals based on this comparison feed back through the
net via the learning rule to modify internal channel connections.

Most pattern recognizers using associative memory are neural nets; a
possible way of looking at them is to view them as multiple-pass
correlators having sets of filters or masks with which they have been
trained, which select the closest filter or mask to any given input test
image by performing a series of thresholded correlation calculations.

Other more sophisticated NN's are being examined and constructed
to perform ATR tasks other than associative recall, such as data
reduction, edge enhancement, or image segmentation.
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3. Review of Experimental Progress

Implementation methods such as those mentioned above are invari-
ably influenced by device issues. Implementation of digital algo-
rithms in software on Von Neumann machines, or in specially con-
structed hardware, faces issues like the number of necessary compu-
tations, analog-to-digital and digital-to-analog converter clock speeds
and bit depths, chip count, hardware size, and power. Optical analog
(and digital) techniques face the limitations of the illumination, modu-
lation, and detection devices used to construct the architectures
mentioned above. For optical associative memory, architectures of
choice have used magneto-optic spatial light modulators (MOSLM's),
photorefractive media, and/or holographic mefdia; relevant device
cdpacity issues govern the size and memory depths of implemented
systems, obtainable dynamic ranges, and resolution, as well as the
choice of algorithm. Table 1 summarizes one of the digital implemen-
tation considerations (the computational burden) for a few of the
integral transform techniques mentioned above.

Because many of the methods mentioned above have been worked on
for decades, we concentrate on mentioning a few recent experiments
which typify the areas.

3.1 Digital Implementations

Software image-processing programs on general-purpose digital
computing machines, as well as specially constructed or "hardwired"
digital circuitry, are frequently used for ATR applications. Thousands
of specific processing problems fall into the ATR arena, and it seems
that each problem has a specific method of digital solution. The
abundance of different types of computing machines and program-
ming languages combines with the inexhaustible array of image-
processing algorithms to produce an impressive background of digi-
tai processing methods. In addition, the proliferation of array process-

Table 1. Computational No. of arithmetic operations required
burden for selected Transfore
transform techniques Real Complex

Walsh-Hadamard N log2 N
(additions or subtractions only)

Discrete Fourier N.\ log- ) '

Discrete cosine N log2 N
f lotelling/ N2 N2
Karhunen-Loeve/
eigenvector
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ing hardware leads researchers to try larger and more complicated
algorithms to solve their processing problems within the very real
time constraints. In the sections below only a few typical digital
electronic computing approaches to ATR problems are discuLsed.

3.1.1 Linear Processing

Model-based syIstel'm/paran,,ter extraction. An example of a model-based
technique using parameter extraction is discussed by Flachs et al [9].
Based on assumed distribution functions for reflected energy and
noise sources, this technique uses image input from a sensor (such as
a focal plane array) to create task-dependent metric(s) corresponding
to the detectability of targets in a selected environment. Analysis of the
distributions of the complexity metric(s), including new input image
data, indicates the presence or absence of targets in a given scene to a
chosen confidence level. In an example task, "cuer complexity,"
"segmentation complexity," and "classification complexity measure"
are calculated. The values for these three metrics are compared to
bounds or thresholds to indicate (1) that target/background separa-
tion can be dne; (2) that simple image data (such as grey level) can be
used to make the separation; and (3) whether or not multiple targets
can be separated using the same image data. Experiments conducted
on a digital computer using infrared (IR) image data show recognition
of an armored personnel carrier in cluttered (natural environment)
background.

Transforin inct[iods. A series of image recognition experiments were
conducted using a transform method known as discrete rectangular
wave transform (DRWT) [101. In the experiments, Walsh-Hadamard-
like functions (rectangular waveforms taking on values of only 0 or 1)
were used in the DFT digital algorithms instead of the set of orthogo-
nal functions. Image information (edge-only outlines of aircraft) was
transformed using DFT and DRWT algorithms, low-frequency trans-
form coefficients were retained, and images were classified with
respect to distance between their transform coefficients and library
features. The methods were tested for rotation invariance with and
without Gaussian noise (the signal to noise ratio (SNR) varied in the
experiments from 30 to 3 dB), and results indicated the superiority of
DRWT. The results demonstrated that the DRWT technique correctly
identified 3-dB SNR rotated images with an accuracy of 33 to 66
percent in multiple trials.

3.1.2 Nonlinear Processing

Carpenter and Grossberg I111 have been active in the application of
NN pattern classification to ATR problems for several years, develop-
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ing over this period a formalism known w,, adaptive resonance theory
(ART) and implementing it in software on digital computers in
pattern recognizers called ARTI and ART2. A recent paper [Il] is
indicative of some of their recent results in vehicle identification.
Using ART2 on a digital computer, correct classifications were made
on multiple samples of IR imagery and range data (differing in scale,
rotation angle, and position) of trucks taken in Gaussian noise on four
different categories. Reported results were 80-percent correct identi-
fication in 10-percent noise with no false alarms.

Another NN approach to invariant pattern recognition involves the
layering of several parallel slabs of fully connected adaline (adaptive
linear elements) neural elements onto adaptive layers of neurons
using a laver of fixed-weight "majoritv-vote-taking" elements. The
number of parallel slabs of adalines necessary will depend on the
degree of invariance desired. The first laver of adalines is trained to
classify patterns regardless of position, scale, or rotation, but its
output is unusable; the layers of adaptable elements are used to
unscramble the first layer's output. In the experiments reported by
Widrow et al [12], 25 slabs of 5 x 5 adalines fed a two-laver adaptive
net. This design gave translation-invariant recognition of 36 patterns
to better than 98-percent accuracy after about 1000 learning cycles.

3.2 Optical Implementations

The bulk of the optical implementations of ATR techniques seem to
cluster in two areas: integral transform techniques (Fourier, Hough,
Wigner) and associative memory architectures. The former are imple-
mented in various different technologies, but the basic architecture is
the same: the signal is optically transformed, transform coefficients
are matched to a "coefficient bank" stored in optical memory (such as
a spatial light modulator (SLM), transparency, or hologram), the
signal is classified as one of these or an outlyer, and outlyer coefficients
are possibly stored in the coefficient bank.

Associative memory architectures are implemented with either so-
called "inner-product" or "outer-product" schemes; in these schemes,
received image data are passed into a multidimensional processing
system which has been "trained" by a predetermined sample set, and
the associative memorv kicks out an identification or relates the
ambiguity as an error.

Optical pattern recognition using holographic spatial filtering is a
type of transform method. The information content of the spatial filter
in implementations is severely limited in terms of the spatial band-
width which can be represented (linewidth per millimeter limits)
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and/or the intensity levels (dvnamic range) which can be used to
represent information. For most real-time applications, SLM's offer
only binary representation of information over a lO0 x 100 pixel 1-cm2
area. Reducing the information content to be represented by the filter
is an approach; however, the discarded information cannot be neces-
sary for valid recognition.

3.2.1 Linear Processing

Orthogonal poltinomial teclhniques. One of the simplest of optical trans-
form methods to implement uses the Fourier kernel. In the example
discussed by Sheng et al [13], the distribution of the Fourier spectrum
is used to characterize an image using Fourier-Mellin descriptors
(FMD's). These FMD's describe the intensities of the Fourier spectrum
representation of the image and are automatically shift invariant;
rotation and scale invariance in this representation requires an addi-
tional normalization of the FMD. Since the loss of phase information
creates ambiguities and the FMD representation is not one-to-onc, thc
class of recognizable objects must exclude these ambiguities. The
architecture uses a standard two-dimensional optical spectrum ana-
lyzer and digitally calculated matched filters to perform object classi-
fication on optically processed images.

Another transform kernel frequently implemented optically is the
Hough transform (HT). Experiments discussed by Casasent and
Richards [14] compare recognition results of using both the HT and FT
on identical image data in a product inspection application. Two
optical HT architectures were examined, differing in the choice of
transform variables (one Cartesian, the other poiar coordinates). The
architectures were implemented using liquid-crystal televisions
(LCTV's) to input camera image data to the processor; the FT was
implemented by simply imaging the LCTV through a spherical lens
onto the detectors.

The experiments were designed to find defects in wire terminals,
classifying the fault as either "splayed" or "smashed," based on
transform representations (which were normalized composites of
many examples of faulty terminals) of each class. Results showed the
rotation invariance of the FT as its greatest strength; HT processing
gave best discrimination among faults, as well as quantitative infor-
mation on the magnitude of faults, although the HT was dependent on
aspect angle. Neither implementation required scale invariance, since
in the application the image scale would be fixed. Conclusions indi-
cated that a combination of techniques would be necessary to solve the
general problem with shift and rotation.

IX



Matched filter and correlation techiniques. Optical correlators have been
in widespread use in signal-processing applications for several years.
The feasibility of using optical correlators for image processing and
target-recognition applications has been shown with numerous lab
demonstrations; however, realistic application of optical correlation
architectures to current ATR problems has not been possible because
of the marginal performance of two-dimensional SLM's. The emer-
gence of low-cost two-dimensional SLM's in the form of LCTV's has
increased eff.irts in this area.

A typical demonstration of optical image correlation for an ATR
problem is given by Chao and Liu [151. Using an interferometric time-
integrating correlator architecture with holographic correlation fil-
ters, Chao and Liu demonstrated tracking of three (overhead view)
model vehicles at TV frame rate. A video image encoded on the LCTV
is correiated with spatially separated holographic matched filter
(HMF) references, using a specially constructed holographic lens to
image the LCTV onto each of the HMF's. The typical problems
associated with correlation techniques (such as undesired partial
correlation among objects) and holographic matched filters (limits on
resolution and number of reference images) place constraints on the
extension of this sort of demonstration to an ATR system. The multi-
plicity of HMF's allowed good translation invariance for this image
correlator; however, since the angle (or rotation) sensitivity of the
HMF's was high, angular invariance would require the encoding of
more rotated images on the HMF's, reducing the SNR performance
because of limitations in the recording material.

3.2.2 Nonlinear Processing

An example of associative memory (or content-addressable memory)
is discussed by Farhat et al [16]. The system uses a vector-matrix
multiplier with a nonlinear iterative feedback stage to implement a
fully connected, two-layer network. The network deals with binary
input vectors and can represent a 4 x 8 image. In the optical imple-
mentation, an array of 32 light-emitting diodes (LED's) illuminates a
64 x 64 element fixed memory mask, and the throughput light is
detected by an array of photodiodes. Electronic circuitry following the
photodiodes performs the thresholding function and feeds the results
back to the input array of LED's. Weight changes and learning can
occur only if the fixed memory mask is changed or replaced by a
modifiable spatial light modulator. Results demonstrated conver-
gence to patterns having bit-error rates as high as 30 percent at cycle
times of 60 ms.
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There are several examples of optical holographic associative memory
using photorefractive (PR) materials and phase conjugation [17,18].
Numerous experimental architectures exist; however, all are similar
in their use of the photorefractive elements for gain and/or
thresholding. In the work of Lee et al [181, the PR materials act as
scratchpad storage media as well as gain and thresholding elements.
The NN implemented is an inner-product matrix-vector multiplier;
since the active elements are continuous media, the processor is
effectively pixelized only by optical diffraction limits. Calculations
indicate that it is possible to build a 23 x 23 neural element slab, fully
connected, which can be cycled an arbitrary number. of times because
of the gain medium. In an experiment discussed by Lee et al [18], the
system was trained on two 35-mm slides of an M-1 tank (overhead
views). Results reported indicate a 3-s convergence time for a partially
obscured and rotated (45' and 90') image. The system reported is
reconfigurable to act on other problems, such as novelty detection and
parameter optimization, with commensurate resolution.

All existing biological neural systems use frequency and phase encod-
ing and processing of information; however, all hardware imple-
mentations simulating such systems use amplitude and/or phase
encoding and generally use fewer levels for number representation.
These fundamental differences, along with the relatively simple learn-
ing rules and the small numbers of neurons and connections, contrib-
ute to the low processing capabilities of existing neural net systems.
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4. Remarks

All the military services have programs concentrating on ATR. Al-
though the requirements vary, the technology does not, so all ATR
program officers get the same answers no matter which service they are in.
Scenarios for the military use of ATR systems range from soldier-in-the-
loop skill augmenters to completely autonomous robot weapons.

ATR is currently the problem generating the most noise at the most levels
in the most services. Military aircraft pilots are overburdened with the
tasks of operating the complex machinery necessary to accomplish their
flight mission, and they do not have the resources to keep themselves and
their aircraft alive while they are performing their mission. In the Army,
tank commanders are faced with a similar problem on the ground, as are
helicopter pilots in the air.

The same demand is heard from any close combat command: supply us
with a device that targets enemy assets in real time. Weapons designers
take up the chorus for targeting devices for their smart weapons. However,
target-acquisition (and tracking) barriers limit the usefulness of smart
munitions to situations in which target-acquisition and tracking problems
are easily solved. Thus, surface-skimming cruise missiles are lcehal at sea
using passive radar homing devices.. imply because their targets are so
easy to see and track. Passive IR homing missiles are responsible for over
90 percent of the aircraft shot down for the same reason. This is why the
close combat people complain about needing ATR-to use as counter-
measures against these weapons.

The above sections survey only a few of the active research areas in ATR,
but some conclusions can be drawn from the scope of the work that is seen
and the types absent. In general, image data manipulation techniques are
based on well-proved, rigorous mathematical theories that have been
physically tested using all types of analog and digital computing systems.
However, the choice of image acquisition and processing techniques is
generally based on only heuristic arguments rather than being derived
from first principles.

Although the so-called ATR problem has been studied for decades, it is
only now that many researchers are attempting to solve the front end of
the ATR problem, which some call preattentive vision and others call
image-from-scene mapping. Because most of the experimental work
mentioned above is application-driven, one can assume a form for
image data; however, without a strong mathematical model for the
formation of image data from scenes, diverse applications and the
specific solutions to them cannot be compared across the board on a
general metric to determine optimal solutions or preferred
architectures.
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